Maps of projected changes - Maps show the projection of change over this century (mean of the period 2071-2100 compared to the mean of the period 1961-1990) under the “High” emission scenario. In the left panel, changes in green water consumption are shown and in the right panel, changes in evapotranspiration.

List of projected changes - The tables show the mean of the projected changes in respectively the evapotranspiration, green water consumption and water stress (rounded values). Note that current land use is used in this study for all assessed time periods. Consequently all changes are caused by climate change alone.

Data and method - The projected green water, evapotranspiration and water stress signals are based on the LPJ-ml Dynamic Global Vegetation model (DGVM) forced by the bias-corrected ECHAM global climate change projections. Projected changes in the climate are assessed for two different greenhouse gas emission scenarios: the “Low” scenario is based upon the SRES B1 (IPCC-AR4) scenario; the “High” scenario is based upon the SRES A2 (IPCC-AR4) scenario. We present the area-averaged mean change, based upon only one climate model, the ECHAM scenario, as this was the only one giving acceptable results. Land use changes up to 2006 have been used. Projections for the future land use depend on many unknown factors and are therefore difficult to incorporate. The data presented here reflect the changes that are only caused by the changing climate i.e. land use is kept constant. Increasing temperature and the rising atmospheric CO2 concentration have an opposite effect on agricultural production. The increasing temperature results in an increasing soil evapotranspiration whereas the rising CO2 concentration reduces plant transpiration especially in the C4-crops. Unfortunately little is known on the interaction of the rising CO2 concentration, fertilizer inputs and increasing temperatures for tropical crops. More research in this direction is needed. Note that changing agricultural practises such as more inputs, new crop varieties etc. may have a strong positive effect on the future agricultural production and may compensate for the negative climate change impacts.

Key findings for Zone 3

- Based on the analyzed ensemble of global climate projections under the assumption of a low and a high emission scenario it can be concluded that rainfall increases. The evapotranspiration is not changing much. Agricultural production is not hampered by water shortages. Crop damage may occur due to flooding, excess of water and diseases related to high air humidity. As the precipitation amounts increase this may occur more frequent. The simulated biomass increases, indicating that the agricultural production increases.

Key adaptation options

- Improved flood management plans to ensure limited damages to agricultural systems during high rainfall events.
- Reducing erosion risk and nutrient leaching by introduction of agroforestry systems
- To adapt to increased climate variability farming systems should become more diverse. This can be done for example by planting multiple crops and using different varieties

Further details can be found in the “Impacts Report” and the “Adaptation Report” in the report section of the final project document - also available online under www.giz.de and www.comifac.org